xgbse._kaplan_neighbors.XGBSEKaplanNeighbors¶
Convert xgboost into a nearest neighbor model, where we use hamming distance to define similar elements as the ones that co-ocurred the most at the ensemble terminal nodes.
Then, at each neighbor-set compute survival estimates with the Kaplan-Meier estimator.
Note
-
We recommend using dart as the booster to prevent any tree to dominate variance in the ensemble and break the leaf co-ocurrence similarity logic.
-
This method can be very expensive at scales of hundreds of thousands of samples, due to the nearest neighbor search, both on training (construction of search index) and scoring (actual search).
Read more in How XGBSE works.
Source code in xgbse/_kaplan_neighbors.py
class XGBSEKaplanNeighbors(XGBSEBaseEstimator):
"""
Convert xgboost into a nearest neighbor model, where we use hamming distance to define
similar elements as the ones that co-ocurred the most at the ensemble terminal nodes.
Then, at each neighbor-set compute survival estimates with the Kaplan-Meier estimator.
!!! Note
* We recommend using dart as the booster to prevent any tree
to dominate variance in the ensemble and break the leaf co-ocurrence similarity logic.
* This method can be very expensive at scales of hundreds of thousands of samples,
due to the nearest neighbor search, both on training (construction of search index) and scoring (actual search).
Read more in [How XGBSE works](https://loft-br.github.io/xgboost-survival-embeddings/how_xgbse_works.html).
"""
def __init__(
self,
xgb_params: Optional[Dict[str, Any]] = None,
n_neighbors: int = 30,
radius: Optional[float] = None,
enable_categorical: bool = False,
):
"""
Args:
xgb_params (Dict, None): Parameters for XGBoost model.
If None, will use XGBoost defaults and set objective as `survival:aft`.
Check <https://xgboost.readthedocs.io/en/latest/parameter.html> for options.
n_neighbors (Int): Number of neighbors for computing KM estimates
radius (Float): If set, uses a radius around the point for neighbors search
enable_categorical (bool): Enable categorical feature support on xgboost model
"""
super().__init__(xgb_params=xgb_params, enable_categorical=enable_categorical)
self.n_neighbors = n_neighbors
self.radius = radius
self.index_id = None
def fit(
self,
X,
y,
time_bins: Optional[Sequence] = None,
validation_data: Optional[List[Tuple[Any, Any]]] = None,
num_boost_round: int = 10,
early_stopping_rounds: Optional[int] = None,
verbose_eval: int = 0,
persist_train: bool = False,
index_id=None,
):
"""
Transform feature space by fitting a XGBoost model and outputting its leaf indices.
Build search index in the new space to allow nearest neighbor queries at scoring time.
Args:
X ([pd.DataFrame, np.array]): Features to be used while fitting XGBoost model
y (structured array(numpy.bool_, numpy.number)): Binary event indicator as first field,
and time of event or time of censoring as second field.
time_bins (np.array): Specified time windows to use when making survival predictions
validation_data (List[Tuple]): Validation data in the format of a list of tuples [(X, y)]
if user desires to use early stopping
num_boost_round (Int): Number of boosting iterations.
early_stopping_rounds (Int): Activates early stopping.
Validation metric needs to improve at least once
in every **early_stopping_rounds** round(s) to continue training.
See xgboost.train documentation.
verbose_eval ([Bool, Int]): Level of verbosity. See xgboost.train documentation.
persist_train (Bool): Whether or not to persist training data to use explainability
through prototypes
index_id (pd.Index): User defined index if intended to use explainability
through prototypes
Returns:
XGBSEKaplanNeighbors: Fitted instance of XGBSEKaplanNeighbors
"""
self.fit_feature_extractor(
X,
y,
time_bins=time_bins,
validation_data=validation_data,
num_boost_round=num_boost_round,
early_stopping_rounds=early_stopping_rounds,
verbose_eval=verbose_eval,
)
self.E_train, self.T_train = convert_y(y)
# creating nearest neighbor index
leaves = self.feature_extractor.predict_leaves(X)
self.tree = BallTree(leaves, metric="hamming", leaf_size=40)
if persist_train:
self.persist_train = True
if index_id is None:
index_id = X.index.copy()
self.index_id = index_id
return self
def predict(
self,
X,
time_bins=None,
return_ci=False,
ci_width=0.683,
return_interval_probs=False,
):
"""
Make queries to nearest neighbor search index build on the transformed XGBoost space.
Compute a Kaplan-Meier estimator for each neighbor-set. Predict the KM estimators.
Args:
X (pd.DataFrame): Dataframe with samples to generate predictions
time_bins (np.array): Specified time windows to use when making survival predictions
return_ci (Bool): Whether to return confidence intervals via the Exponential Greenwood formula
ci_width (Float): Width of confidence interval
return_interval_probs (Bool): Boolean indicating if interval probabilities are
supposed to be returned. If False the cumulative survival is returned.
Returns:
(pd.DataFrame): A dataframe of survival probabilities
for all times (columns), from a time_bins array, for all samples of X
(rows). If return_interval_probs is True, the interval probabilities are returned
instead of the cumulative survival probabilities.
upper_ci (np.array): Upper confidence interval for the survival
probability values
lower_ci (np.array): Lower confidence interval for the survival
probability values
"""
leaves = self.feature_extractor.predict_leaves(X)
if self.radius:
assert self.radius >= 0, "Radius must be greater than 0"
neighs, _ = self.tree.query_radius(
leaves, r=self.radius, return_distance=True
)
number_of_neighbors = np.array([len(neigh) for neigh in neighs])
if np.argwhere(number_of_neighbors == 1).shape[0] > 0:
# If there is at least one sample without neighbors apart from itself
# a warning is raised suggesting a radius increase
warnings.warn(
"Warning: Some samples don't have neighbors apart from itself. Increase the radius",
RuntimeWarning,
)
else:
_, neighs = self.tree.query(leaves, k=self.n_neighbors)
# gathering times and events/censors for neighbor sets
T_neighs = self.T_train[neighs]
E_neighs = self.E_train[neighs]
# vectorized (very fast!) implementation of Kaplan Meier curves
if time_bins is None:
time_bins = self.time_bins
# calculating z-score from width
z = st.norm.ppf(0.5 + ci_width / 2)
preds_df, upper_ci, lower_ci = calculate_kaplan_vectorized(
T_neighs, E_neighs, time_bins, z
)
if return_ci and return_interval_probs:
raise ValueError(
"Confidence intervals for interval probabilities is not supported. Choose between return_ci and return_interval_probs."
)
if return_interval_probs:
preds_df = calculate_interval_failures(preds_df)
return preds_df
if return_ci:
return preds_df, upper_ci, lower_ci
return preds_df
__init__(self, xgb_params=None, n_neighbors=30, radius=None, enable_categorical=False)
special
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
xgb_params |
Dict, None |
Parameters for XGBoost model.
If None, will use XGBoost defaults and set objective as |
None |
n_neighbors |
Int |
Number of neighbors for computing KM estimates |
30 |
radius |
Float |
If set, uses a radius around the point for neighbors search |
None |
enable_categorical |
bool |
Enable categorical feature support on xgboost model |
False |
Source code in xgbse/_kaplan_neighbors.py
def __init__(
self,
xgb_params: Optional[Dict[str, Any]] = None,
n_neighbors: int = 30,
radius: Optional[float] = None,
enable_categorical: bool = False,
):
"""
Args:
xgb_params (Dict, None): Parameters for XGBoost model.
If None, will use XGBoost defaults and set objective as `survival:aft`.
Check <https://xgboost.readthedocs.io/en/latest/parameter.html> for options.
n_neighbors (Int): Number of neighbors for computing KM estimates
radius (Float): If set, uses a radius around the point for neighbors search
enable_categorical (bool): Enable categorical feature support on xgboost model
"""
super().__init__(xgb_params=xgb_params, enable_categorical=enable_categorical)
self.n_neighbors = n_neighbors
self.radius = radius
self.index_id = None
fit(self, X, y, time_bins=None, validation_data=None, num_boost_round=10, early_stopping_rounds=None, verbose_eval=0, persist_train=False, index_id=None)
¶
Transform feature space by fitting a XGBoost model and outputting its leaf indices. Build search index in the new space to allow nearest neighbor queries at scoring time.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
[pd.DataFrame, np.array] |
Features to be used while fitting XGBoost model |
required |
y |
structured array(numpy.bool_, numpy.number |
Binary event indicator as first field, and time of event or time of censoring as second field. |
required |
time_bins |
np.array |
Specified time windows to use when making survival predictions |
None |
validation_data |
List[Tuple] |
Validation data in the format of a list of tuples [(X, y)] if user desires to use early stopping |
None |
num_boost_round |
Int |
Number of boosting iterations. |
10 |
early_stopping_rounds |
Int |
Activates early stopping. Validation metric needs to improve at least once in every early_stopping_rounds round(s) to continue training. See xgboost.train documentation. |
None |
verbose_eval |
[Bool, Int] |
Level of verbosity. See xgboost.train documentation. |
0 |
persist_train |
Bool |
Whether or not to persist training data to use explainability through prototypes |
False |
index_id |
pd.Index |
User defined index if intended to use explainability through prototypes |
None |
Returns:
Type | Description |
---|---|
XGBSEKaplanNeighbors |
Fitted instance of XGBSEKaplanNeighbors |
Source code in xgbse/_kaplan_neighbors.py
def fit(
self,
X,
y,
time_bins: Optional[Sequence] = None,
validation_data: Optional[List[Tuple[Any, Any]]] = None,
num_boost_round: int = 10,
early_stopping_rounds: Optional[int] = None,
verbose_eval: int = 0,
persist_train: bool = False,
index_id=None,
):
"""
Transform feature space by fitting a XGBoost model and outputting its leaf indices.
Build search index in the new space to allow nearest neighbor queries at scoring time.
Args:
X ([pd.DataFrame, np.array]): Features to be used while fitting XGBoost model
y (structured array(numpy.bool_, numpy.number)): Binary event indicator as first field,
and time of event or time of censoring as second field.
time_bins (np.array): Specified time windows to use when making survival predictions
validation_data (List[Tuple]): Validation data in the format of a list of tuples [(X, y)]
if user desires to use early stopping
num_boost_round (Int): Number of boosting iterations.
early_stopping_rounds (Int): Activates early stopping.
Validation metric needs to improve at least once
in every **early_stopping_rounds** round(s) to continue training.
See xgboost.train documentation.
verbose_eval ([Bool, Int]): Level of verbosity. See xgboost.train documentation.
persist_train (Bool): Whether or not to persist training data to use explainability
through prototypes
index_id (pd.Index): User defined index if intended to use explainability
through prototypes
Returns:
XGBSEKaplanNeighbors: Fitted instance of XGBSEKaplanNeighbors
"""
self.fit_feature_extractor(
X,
y,
time_bins=time_bins,
validation_data=validation_data,
num_boost_round=num_boost_round,
early_stopping_rounds=early_stopping_rounds,
verbose_eval=verbose_eval,
)
self.E_train, self.T_train = convert_y(y)
# creating nearest neighbor index
leaves = self.feature_extractor.predict_leaves(X)
self.tree = BallTree(leaves, metric="hamming", leaf_size=40)
if persist_train:
self.persist_train = True
if index_id is None:
index_id = X.index.copy()
self.index_id = index_id
return self
predict(self, X, time_bins=None, return_ci=False, ci_width=0.683, return_interval_probs=False)
¶
Make queries to nearest neighbor search index build on the transformed XGBoost space. Compute a Kaplan-Meier estimator for each neighbor-set. Predict the KM estimators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
pd.DataFrame |
Dataframe with samples to generate predictions |
required |
time_bins |
np.array |
Specified time windows to use when making survival predictions |
None |
return_ci |
Bool |
Whether to return confidence intervals via the Exponential Greenwood formula |
False |
ci_width |
Float |
Width of confidence interval |
0.683 |
return_interval_probs |
Bool |
Boolean indicating if interval probabilities are supposed to be returned. If False the cumulative survival is returned. |
False |
Returns:
Type | Description |
---|---|
(pd.DataFrame) |
A dataframe of survival probabilities for all times (columns), from a time_bins array, for all samples of X (rows). If return_interval_probs is True, the interval probabilities are returned instead of the cumulative survival probabilities. upper_ci (np.array): Upper confidence interval for the survival probability values lower_ci (np.array): Lower confidence interval for the survival probability values |
Source code in xgbse/_kaplan_neighbors.py
def predict(
self,
X,
time_bins=None,
return_ci=False,
ci_width=0.683,
return_interval_probs=False,
):
"""
Make queries to nearest neighbor search index build on the transformed XGBoost space.
Compute a Kaplan-Meier estimator for each neighbor-set. Predict the KM estimators.
Args:
X (pd.DataFrame): Dataframe with samples to generate predictions
time_bins (np.array): Specified time windows to use when making survival predictions
return_ci (Bool): Whether to return confidence intervals via the Exponential Greenwood formula
ci_width (Float): Width of confidence interval
return_interval_probs (Bool): Boolean indicating if interval probabilities are
supposed to be returned. If False the cumulative survival is returned.
Returns:
(pd.DataFrame): A dataframe of survival probabilities
for all times (columns), from a time_bins array, for all samples of X
(rows). If return_interval_probs is True, the interval probabilities are returned
instead of the cumulative survival probabilities.
upper_ci (np.array): Upper confidence interval for the survival
probability values
lower_ci (np.array): Lower confidence interval for the survival
probability values
"""
leaves = self.feature_extractor.predict_leaves(X)
if self.radius:
assert self.radius >= 0, "Radius must be greater than 0"
neighs, _ = self.tree.query_radius(
leaves, r=self.radius, return_distance=True
)
number_of_neighbors = np.array([len(neigh) for neigh in neighs])
if np.argwhere(number_of_neighbors == 1).shape[0] > 0:
# If there is at least one sample without neighbors apart from itself
# a warning is raised suggesting a radius increase
warnings.warn(
"Warning: Some samples don't have neighbors apart from itself. Increase the radius",
RuntimeWarning,
)
else:
_, neighs = self.tree.query(leaves, k=self.n_neighbors)
# gathering times and events/censors for neighbor sets
T_neighs = self.T_train[neighs]
E_neighs = self.E_train[neighs]
# vectorized (very fast!) implementation of Kaplan Meier curves
if time_bins is None:
time_bins = self.time_bins
# calculating z-score from width
z = st.norm.ppf(0.5 + ci_width / 2)
preds_df, upper_ci, lower_ci = calculate_kaplan_vectorized(
T_neighs, E_neighs, time_bins, z
)
if return_ci and return_interval_probs:
raise ValueError(
"Confidence intervals for interval probabilities is not supported. Choose between return_ci and return_interval_probs."
)
if return_interval_probs:
preds_df = calculate_interval_failures(preds_df)
return preds_df
if return_ci:
return preds_df, upper_ci, lower_ci
return preds_df
set_fit_request(self, *, early_stopping_rounds='$UNCHANGED$', index_id='$UNCHANGED$', num_boost_round='$UNCHANGED$', persist_train='$UNCHANGED$', time_bins='$UNCHANGED$', validation_data='$UNCHANGED$', verbose_eval='$UNCHANGED$')
¶
Request metadata passed to the fit
method.
Note that this method is only relevant if
enable_metadata_routing=True
(see :func:sklearn.set_config
).
Please see :ref:User Guide <metadata_routing>
on how the routing
mechanism works.
The options for each parameter are:
-
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided. -
False
: metadata is not requested and the meta-estimator will not pass it tofit
. -
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it. -
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (sklearn.utils.metadata_routing.UNCHANGED
) retains the
existing request. This allows you to change the request for some
parameters and not others.
.. versionadded:: 1.3
.. note::
This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
:class:~sklearn.pipeline.Pipeline
. Otherwise it has no effect.
Parameters¶
early_stopping_rounds : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for early_stopping_rounds
parameter in fit
.
index_id : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for index_id
parameter in fit
.
num_boost_round : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for num_boost_round
parameter in fit
.
persist_train : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for persist_train
parameter in fit
.
time_bins : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for time_bins
parameter in fit
.
validation_data : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for validation_data
parameter in fit
.
verbose_eval : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for verbose_eval
parameter in fit
.
Returns¶
self : object The updated object.
Source code in xgbse/_kaplan_neighbors.py
def func(*args, **kw):
"""Updates the request for provided parameters
This docstring is overwritten below.
See REQUESTER_DOC for expected functionality
"""
if not _routing_enabled():
raise RuntimeError(
"This method is only available when metadata routing is enabled."
" You can enable it using"
" sklearn.set_config(enable_metadata_routing=True)."
)
if self.validate_keys and (set(kw) - set(self.keys)):
raise TypeError(
f"Unexpected args: {set(kw) - set(self.keys)} in {self.name}. "
f"Accepted arguments are: {set(self.keys)}"
)
# This makes it possible to use the decorated method as an unbound method,
# for instance when monkeypatching.
# https://github.com/scikit-learn/scikit-learn/issues/28632
if instance is None:
_instance = args[0]
args = args[1:]
else:
_instance = instance
# Replicating python's behavior when positional args are given other than
# `self`, and `self` is only allowed if this method is unbound.
if args:
raise TypeError(
f"set_{self.name}_request() takes 0 positional argument but"
f" {len(args)} were given"
)
requests = _instance._get_metadata_request()
method_metadata_request = getattr(requests, self.name)
for prop, alias in kw.items():
if alias is not UNCHANGED:
method_metadata_request.add_request(param=prop, alias=alias)
_instance._metadata_request = requests
return _instance
set_predict_request(self, *, ci_width='$UNCHANGED$', return_ci='$UNCHANGED$', return_interval_probs='$UNCHANGED$', time_bins='$UNCHANGED$')
¶
Request metadata passed to the predict
method.
Note that this method is only relevant if
enable_metadata_routing=True
(see :func:sklearn.set_config
).
Please see :ref:User Guide <metadata_routing>
on how the routing
mechanism works.
The options for each parameter are:
-
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided. -
False
: metadata is not requested and the meta-estimator will not pass it topredict
. -
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it. -
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (sklearn.utils.metadata_routing.UNCHANGED
) retains the
existing request. This allows you to change the request for some
parameters and not others.
.. versionadded:: 1.3
.. note::
This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
:class:~sklearn.pipeline.Pipeline
. Otherwise it has no effect.
Parameters¶
ci_width : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for ci_width
parameter in predict
.
return_ci : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for return_ci
parameter in predict
.
return_interval_probs : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for return_interval_probs
parameter in predict
.
time_bins : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for time_bins
parameter in predict
.
Returns¶
self : object The updated object.
Source code in xgbse/_kaplan_neighbors.py
def func(*args, **kw):
"""Updates the request for provided parameters
This docstring is overwritten below.
See REQUESTER_DOC for expected functionality
"""
if not _routing_enabled():
raise RuntimeError(
"This method is only available when metadata routing is enabled."
" You can enable it using"
" sklearn.set_config(enable_metadata_routing=True)."
)
if self.validate_keys and (set(kw) - set(self.keys)):
raise TypeError(
f"Unexpected args: {set(kw) - set(self.keys)} in {self.name}. "
f"Accepted arguments are: {set(self.keys)}"
)
# This makes it possible to use the decorated method as an unbound method,
# for instance when monkeypatching.
# https://github.com/scikit-learn/scikit-learn/issues/28632
if instance is None:
_instance = args[0]
args = args[1:]
else:
_instance = instance
# Replicating python's behavior when positional args are given other than
# `self`, and `self` is only allowed if this method is unbound.
if args:
raise TypeError(
f"set_{self.name}_request() takes 0 positional argument but"
f" {len(args)} were given"
)
requests = _instance._get_metadata_request()
method_metadata_request = getattr(requests, self.name)
for prop, alias in kw.items():
if alias is not UNCHANGED:
method_metadata_request.add_request(param=prop, alias=alias)
_instance._metadata_request = requests
return _instance